Immunosuppressive Iridoids from the Fruits of Gardenia jasminoides

Wen-Liang Chang,*,[†] Hua-Ying Wang,[†] Li-Shian Shi,^{†,‡} Jenn-Haung Lai,[§] and Hang-Ching Lin[†]

School of Pharmacy, National Defense Medical Center, National Defense University, Taipei, Taiwan 114, Republic of China, and Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan 114, Republic of China

Received July 8, 2005

A new iridoid, gardaloside (1), and a new safranal-type monoterpene, jasminoside G (2), together with 10 known compounds including nine iridoids and a second safranal-type monoterpene, were isolated from the fruits of *Gardenia jasminoides*. The structures of 1 and 2 were established on the basis of spectroscopic evidence. Of these compounds, geniposide (3), 6α -hydroxygeniposide (5), ixoroside (7), and shanzhiside (8) showed significant inhibition of IL-2 secretion by phorbol myristate acetate and anti-CD28 monoclonal antibody co-stimulated activation of human peripheral blood T cells.

The dried ripe fruits of Gardenia jasminoides Ellis (Rubiaceae) are a traditional Chinese drug used as an antiphlogistic, choleretic, diuretic, hemostatic, and laxative in the treatment of traumatosis by external application.¹ A number of iridoid glycosides and crocetin have been isolated from G. jasminoides and reported as active components for increased bile secretion and hepatoprotection.¹⁻³ In a search for immunosuppressive agents from Chinese herbs, it was found that the MeOH crude extract of G. jasminoides specifically inhibited the CD28-co-stimulated activation of human peripheral blood T cells. These extracts showed inhibitory activity at doses of 50, 100, and 200 μ g/ mL of 52%, 34%, and 37% inhibition of IL-2 secretion, respectively, toward phorbol myristate acetate (PMA) and anti-CD28 monoclonal antibody (anti-CD28 mAb) costimulated activation of human peripheral blood T cells. The medium-polar fraction of this plant was investigated and led to the isolation and characterization of a new iridoid, gardaloside (1), and a new safranal-type monoterpene, jasminoside G (2), together with 10 known compounds including nine iridoids and another monoterpene.

The structures of the known compounds were identified as geniposide (3),⁴ genipin gentiobioside (4),⁴ 6α -hydroxygeniposide (5),⁵ 6β -hydroxygeniposide (6),⁵ ixoroside (7),⁶ shanzhiside (8),⁷ gardenoside (9),⁸ 7β -hydroxysplendoside (10),⁹ mussaenosidic acid (11),¹⁰ and jasminoside B (12),¹¹ by comparing their spectroscopic data with those reported in the literature. Compounds 10-12 were isolated for the first time from this plant. In the present paper, we report the isolation and structural identification of 1 and 2 from *G. jasminoides* and their immunosuppressive effect toward human peripheral blood T cells.

Gardaloside (1) was obtained as a pale yellowish oil. The HRFABMS of 1 exhibited a sodiated molecular ion peak at m/z 381.1167 [M + Na]⁺, consistent with the molecular formula C₁₆H₂₂O₉. The IR absorption band at 1626 cm⁻¹ indicated the presence of an aldehyde group, which was confirmed by a ¹H NMR signal at δ 9.19 (s) and a resonance at δ 193.0 in the ¹³C NMR spectrum. The NMR data of 1 were similar to ixoroside (7),⁵ except for the presence of ¹H NMR signals at δ 5.35 (2H, s) and 4.31 (1H, m) in

CO₂CH₂ $R_1 = H, R_2 = H$ 3 HO 4 R1= glc, R2= H 5 R₁= H, R₂= α-OH R. 6 R₁= H, R₂= β-OH ОН CH₃ $R_1 = CHO, R_2 = R_3 = H,$ 10 $R_4 = \alpha - CH_3, \tilde{\beta} - OH$ 8 R₁= COOH, R₂= β-OH, R₃= H, R₄= α-CH₃, β-OH ОН 2 HO HO HO

conjunction with ¹³C NMR resonances at δ 152.4, 112.8, and 73.9, corresponding to an exocyclic methylene group and an oxygenated methine proton in 1. Two additional functional groups were observed, an oxygenated methine proton at C-7 and an exocyclic methylene group at C-8, based on the key HMBC correlations observed from H-9 (δ 3.05) to C-10 (δ 112.8) and C-6 (δ 39.0) and from H-7 (δ 4.31) to C-10 (δ 112.8). These assignments were further supported by exocyclic methylene protons at δ 5.35 that showed long-range HMBC correlations with C-8 (δ 152.4), C-7 (δ 73.9), and C-9 (δ 44.8) and correlations exhibited between H-7 (δ 4.31) and H-9 (δ 3.05) in its NOESY spectrum. An anomeric proton signal at δ 4.64 (1H, d, J =7.9 Hz) suggested the presence of a sugar residue with β -configuration and H-1 (δ 5.65) in the α -configuration. The relative configuration of a C-7 hydroxyl group was assigned as β , on the basis of the NOE correlation exhibited between H-7 (δ 4.31) and H-1 (δ 5.65). Thus, the structure of compound 1 was deduced as (1S,4aS,6S,7aS)-1,4a,5,6,7,7ahexahydro-6-hydroxy-7-methylene-1-(O-β-D-glucopyranosyl)cyclopenta[c]pyran-4-carbaldehyde.

Jasminoside G (2) was obtained as a pale yellowish oil. The HRFABMS of 2 showed a peak at m/z 347.1708 [M + H]⁺ corresponding to the molecular formula $C_{16}H_{26}O_8$. The UV, IR, and ¹H NMR spectral data of 2 were similar to that of jasminoside B (12),¹⁰ except the attachment of a β -D-glucopyranosyl moiety is in a different position. The

^{*} To whom correspondence should be addressed.Tel: +886-2-87923100, ext. 18879. Fax: 886-2-87923169. E-mail: wlchang@ndmctsgh.edu.tw. † National Defense University.

[‡]Current address: Department of Biotechnology, National Formosa University, Huwei, Yunlin, Taiwan, Republic of China.

[§] Tri-Service General Hospital.

attachment of the β -D-glucopyranosyl moiety in **2** was found to be at the C-7 position, on the basis of C-7 (δ 70.0) being shifted downfield by δ 7.89 and C-6 (δ 48.1) being shifted upfield by δ 2.54 compared with ¹³C NMR data of jasminoside B (12). The HMBC spectrum showed a correlation of H-1' (δ 4.22) to C-7 (δ 70.0) and a correlation between methyl protons (δ 1.14) and H-7 (δ 4.10 and 3.84) in its NOSEY spectrum, supporting the attachment of a β -Dglucopyranosyl moiety at the C-7 position. Thus, the structure of compound 2 was deduced as (S)-3-(hvdroxymethyl)-5,5-dimethyl-4- $[(O-\beta-D-glucopyranosyl)methyl]cy$ clohex-2-enone.

In the biological assay, six major iridoid compounds (3– 8) showed significant inhibition of IL-2 secretion by human T cell-induced CD28-co-stimulated activation at $100 \,\mu$ g/mL. These compounds possess an iridoid glucoside moiety. The iridoid glycosides may be a kind of pharmacophore of the inhibitor of CD28-co-stimulated pathway speculative statement. Among them, compounds 3, 5, 7, and 8 showed significant inhibition of IL-2 secretion at 50 μ g/mL (Table 2). Compounds 7 and 8, which possess a hydroxyl moiety at C-8, showed more potent activity than those of the other iridoid glucosides. The presence of a hydroxyl functionality at the C-8 position in iridoid glucosides is probably responsible for enhancing their inhibition activities.

Experimental Section

General Experimental Procedures. Optical rotations were measured on a JASCO DIP 370 digital polarimeter. IR spectra were recorded in KBr disks on a Perkin-Elmer 983 G spectrophotometer. UV spectra were obtained on a Shimadzu UV-160 spectrometer. ¹H and ¹³C NMR spectra were determined on a Bruker AM-500 spectrometer using DMSO- d_6 and MeOH- d_4 , with TMS as internal standard, and 2D NMR spectra were recorded by using the Bruker standard pulse programs. FABMS were measured on a JEOL JMX-HX110 mass spectrometer.

Plant Material. "Shanzhizi", the fruits of Gardenia jasminoides Ellis, was supplied from Chien-Yuan Co., Taipei, Taiwan, during September 2002. The plant was identified by one of the authors (H.C.L.) at National Defense Medical Center, where a voucher specimen (NDMCP No. 910901) has been deposited.

Extraction and Isolation. The dried and powdered fruits (9.87 kg) of G. jasminoides were extracted with Me₂CO and MeOH (20 L \times 4), successively at room temperature. The MeOH extracts were concentrated under reduced pressure to yield a black syrup (763.6 g), which was dissolved in 95% MeOH/H₂O (1 L), then partitioned (1:1) with *n*-hexane to give the *n*-hexane-soluble fraction (163.6 g) and a 95% MeOH/H₂Osoluble fraction (600.0 g). The 95% MeOH/H₂O-soluble fraction (300.0 g) was subjected to medium-pressure liquid chromatography (MPLC) (C₈ column; 50% MeOH/H₂O) to afford four fractions. The first fraction (194.0 g) was subjected to further MPLC (C₈ column; 30% MeOH/H₂O) to produce three subfractions. The first subfraction was chromatographed on a Lobar (RP-8) column (15% MeOH/H₂O) to give genipin gentibioside (4, 5.40 g) and 6α -hydroxygeniposide (5, 282.0 mg). The second subfraction was chromatographed by preparative HPLC (C₁₈ column; mobile phase: 15% MeOH/H2O; flow rate: 10 mL/ min) to give nine compounds, 6β -hydroxygeniposide (6, 113.4 mg, $t_{\rm R}$ 36.6 min), ixoroside (7, 127.7 mg, $t_{\rm R}$ 28.9 min), shanzhiside (8, 120.4 mg, $t_{\rm R}$ 20.5 min), gardenoside (9, 16.2 mg, $t_{\rm R}$ 28.5), 7 β -hydroxysplendoside (10, 9.3 mg, $t_{\rm R}$ 16.6 min), jasminoside B (12, 25.0 mg, t_R 31.3 min), mussaenosidic acid (11, 3.5 mg, $t_{\rm R}$ 26.0 min), gardaloside (1, 3.7 mg, $t_{\rm R}$ 23.3 min), and jasminoside G (2, 5.0 mg, t_R 30.5 min). The second subfraction was chromatographed on a Lobar (RP-8) column $(30\% \text{ MeOH/H}_2\text{O})$ to give geniposide (3, 22.1 g).

Gardaloside (1): pale yellow oil; $[\alpha]^{23}_{D}$ -69.6° (c 0.18, MeOH); UV (MeOH) $\bar{\lambda}_{max}$ (log ϵ) 244 (3.9) nm; IR (KBr) ν_{max}

Table 1. NMR Spectral Data for Compounds 1 and 2^a

	1		2	
position	$\delta_{ ext{H}}{}^{b}$	$\delta_{ m C}$	$\delta_{ ext{H}}{}^{b}$	$\delta_{ m C}$
1	5.65 d (3.8)	97.7		36.4
2			2.67 d (17.2)	49.8
			2.04 d (17.2)	
3	7.36 s	164.5		202.6
4		124.1	6.13 s	123.6
5	3.18^{c}	29.5		168.7
6	2.16 ddd (12.6, 6.3, 4.4)	39.0	2.29 t (1.8, 8.2)	48.1
	1.86 ddd (12.6, 7.2, 7.2)			
7	4.31^{c}	73.9	4.10 dd (11.1, 5.8)	70.0
			3.84 dd (11.1, 5.2)	
8		152.4	1.14 s	27.2
9	3.05^{c}	44.8	1.04 s	28.9
10	5.35 s	112.8	4.46 dd (17.6, 1.4)	65.1
			4.18 dd (17.6, 1.3)	
11	9.19 s	193.0		
1'	4.67 d (7.9)	100.1	4.22 d (7.8)	104.5
2'	3.18^{c}	74.7	3.12 d (7.8)	75.1
3′	3.25^{c}	78.0	3.31^{c}	78.0
4'	3.26^{c}	71.6	3.24^{c}	71.6
5'	3.32^{c}	78.5	3.24^{c}	78.2
6'	3.90 dd (11.7, 5.3)	62.8	3.86^{c}	62.8
	3.63 ^c		3.64 dd (11.7, 5.3)	

^{*a*} Measured in MeOH- d_4 . ^{*b*} Figures in parentheses denote J values (Hz). ^c Overlapped signals.

Table 2. Effect of Compounds from G. jasminoides on PMA and Anti-CD28 mAb-Induced IL-2 Secretion

	IL-2 secretion (10	IL-2 secretion $(100\% \text{ cell survival})^a$		
compound	$50\mu { m g/mL}$	$100\mu { m g/mL}$		
control	539 ± 170	539 ± 170		
3	249 ± 97	216 ± 97		
4	510 ± 161	370 ± 51		
5	253 ± 11	171 ± 40		
6	322 ± 105	186 ± 74		
7	231 ± 45	120 ± 26		
8	5 ± 5	5 ± 25		

^{*a*} 100% survival rate of T cells compared with the control in the MTT assay is shown.

3367 (OH), 2927, 1626 (CHO), 1410, 1242, 1157 cm⁻¹; ¹H and ¹³C NMR (MeOH-d₄, 500 and 125 MHz), see Table 1; FABMS (positive mode) m/z 381 [M + Na]⁺ (12), 358 [M + H]⁺ (2), 329 (20), 289 (11), 176 (100); HRFABMS m/z 381.1167 [M + Na]+ (calcd for C₁₆H₂₂NaO₉, 381.1161).

Jasminoside G (2): pale yellow oil; $[\alpha]^{23}_{D} - 75.6^{\circ}$ (c 0.25, MeOH); UV (MeOH) $\lambda_{\rm max}$ (log $\epsilon)$ 237 (3.70) nm; IR (KBr) $\nu_{\rm max}$ 3413 (OH), 1648 (C=O), 1384, 1078, 1038 cm⁻¹; ¹H and ¹³C NMR (MeOH- d_4 , 500 and 125 MHz), see Table 2; FABMS (positive mode) m/z 369 $[M + Na]^+$ (28), 347 $[M + H]^+$ (47), 329 (100), 319 (10); HRFABMS m/z 347.1708 [M + H]⁺ (calcd for $C_{16}H_{27}O_8$, 347.1706).

Immunosuppression Assay. T lymphocytes were purified from whole blood by negative selection. The PMA and anti-CD28 monoclonal antibodies stimulated mimicked CD28 costimulation. The determination of IL-2 concentration of CD28co-stimulated T cells was performed by ELISA assay.¹² The cytotoxicity was determined by MTT colorimetric assay.

Acknowledgment. We are grateful to the National Science Council, the Republic of China, for support of this research.

References and Notes

- (1) Tang, W.; Eisenbrand, G. Chinese Drugs of Plant Origin-Gardenia *jasminoides Eillis*; Springer-Verlag: Berlin, 1992; pp 539–543.
 (2) El-Naggar, L. J.; Beal, J. L. J. Nat. Prod. **1980**, 43, 649–707.
 (3) Parmar, V. S.; Sharma, S. K.; Poonam. J. Sci. Ind. Res. **2000**, 59 (11),
- 893 903
- (4) Endo, T.; Taguehi, H. Chem. Pharm. Bull. 1973, 21, 2684-2688.

- (5) Miyagoshi, M.; Amagaya, S.; Ogihara, Y. Planta Med. 1987, 53, 462-46**4**.
- (4) 404.
 (6) Takeda, Y.; Nishimura, H.; Inouye, H. Phytochemistry 1975, 14, 2647–2650.
 (7) Inouye, H.; Saito, S.; Shingu, T. Tetrahedron Lett. 1970 (41), 3581–3584.
- Bailleul, F.; Delaveau, P.; Rabron, A.; Plat, M.; Koch, M. *Phytochemistry* **1977**, *16*, 723–726.
 Jensen, S. R.; Nielsen, B. J. *Phytochemistry* **1982**, *21*, 1623–1629.
- (10) Damtoft, S.; Hansen, S. B.; Jacobsen, B.; Jensen, S. R.; Nielsen, B. J. *Phytochemistry* 1984, 23, 2387–2389.
 (11) Machida, K.; Ondera, R.; Furuta, K.; Kikuchi, M. *Chem. Pharm. Bull.*
- 1998, 46, 1295-1300.
- (12) Lai, J. H.; Ho, L. J.; Kwan, C. Y.; Chang D. M.; Lee, T. C. *Transplantation* **1999**, *68*, 1383–1392.

NP0580816